THE BF₃ CATALYZED DECOMPOSITION OF DIAZOCARBONYL COMPOUNDS IN NITRILES: SYNTHESIS OF OXAZOLES

Toshikazu IBATA and Ryohei SATO
Institute of Chemistry, College of General Education,
Osaka University, Toyonaka, Osaka 560

The BF₃ catalyzed decomposition of diazocarbonyl compounds in nitriles afforded the corresponding oxazoles in high yield. This method is applicable to diazocarbonyl compounds such as m- and p-substituted diazoacetophenones, ethyl diazoacetate, azibenzil, dibenzoyldiazomethane, dimethyl diazomalonate, and 7-diazo-8-acenaphthenone.

The 1,3-dipolar cycloaddition of carbonylcarbenes to carbon-nitrogen triple bonds of nitrile group has been recognized to give oxazoles in the thermal, $^{1)}$ photochemical $^{2)}$ and transition metal $^{1)}$ catalyzed decomposition of diazocarbonyl compounds. The yields of oxazoles were not so high even though the copper 1a , $^{1b)}$ and $\pi\text{-allylic palladium}^{3)}$ catalysts were used. Nozaki and his co-workers improved the yield up to 66% using WCl $_{6}$ as a catalyst. $^{4)}$ Recently Doyle and his co-workers reported that the AlCl $_{3}$ catalyzed reaction of $\alpha\text{-unsubstituted}$ diazoketones and nitriles gives oxazoles in high yield. $^{5)}$ Their report prompted us to publish our results on the title reaction.

When diazoacetophenone (3 mmol) was decomposed by adding a solution of BF $_3$ -etherate (3 mmol) in an excess of acetonitrile (20 ml) at 5°C, vigorous evolution of nitrogen was observed and color of the reaction mixture turned pale red. column chromatography of the reaction mixture (silica gel-benzene) yielded 2-methyl-5-phenyl-oxazole ($\underline{4a}$) in 94% yield after usual work up. Other nitriles such as propionitrile, phenylacetonitrile, and benzonitrile also gave the corresponding oxazoles in good yields. This method is applicable to other m- and p-substituted diazoacetophenones, ethyl diazoacetate, azibenzil, dibenzoyldiazomethane, and dimethyl diazomalonate.

Furthermore, 7-diazo-8-acenaphthenone gave a condensed oxazole $(\underline{5})$ in a yield of 54% besides two other unidentified products.

	R ₁	$^{\mathrm{R}}2$	R ₃	Reaction	Yield of	NMR (δ)	
	•	2	J	Temp (°C)	<u>4</u> (%)	$CH_3(=R_3)$	$H (=R_2)$
a	C ₆ H ₅	Н	CH ₃	5	94	2.48	7.15
b	с ₆ ^н 5	Н	С ₂ ^Н 5	5	99	-	7.13
С	^С 6 ^Н 5	Н	CH ₂ Ph	5	77	-	7.20
đ	^С 6 ^Н 5	Н	С ₆ ^Н 5	5	92	-	?
е	p-CH ₃ OC ₆ H ₄	Н	СH ₃	5	95	2.50	7.08
f	$^{\mathrm{p-CH}_{3}^{\mathrm{C}}_{6}^{\mathrm{H}}_{4}}$	Н	СH ₃	5	96	2.45	7.08
g	$^{\mathrm{m-CH}}3^{\mathrm{C}}6^{\mathrm{H}}4$	Н	CH ₃	5	93	2.45	7.13
h	p-ClC ₆ H ₄	Н	CH ₃	5	83	2.47	7.15
i	m-ClC ₆ H ₄	Н	CH ₃	5	91	2.48	7.18
j	p-BrC6H4	Н	CH ₃	5	88	2.52	7.47
k	$^{\mathrm{p-NO}}2^{\mathrm{C}}6^{\mathrm{H}}4$	Н	CH ₃	5	84	2.42	7.45
1	с ₂ н ₅ о	Н	CH ₃	20	62	2.02	5.95
m	с ₆ н ₅	C6 ^H 5	CH ₃	5	68	2.55	-
n	^C 6 ^H 5	C6H5CO	CH ₃	80	79	2.50	-
0	CH ₃ O	сн ₃ оос	CH ₃	80	32	2.35	-

Table 1. Yields and NMR Data of Oxazoles (4)

When the reaction of diazoacetophenone was carried out in an acetonitrile solution containing a trace amount of water, oxazole ($\underline{4a}$) was accompanied by phenacyl alcohol and N-phenacylacetamide which may be derived from the reaction of H_2O with a reaction intermediate ($\underline{3a}$: R_1 =Ph, R_2 =H, R_3 =CH $_3$). This implys that the stepwise addition mechanism via the ylide type intermediate ($\underline{3}$) seems to be favorable in this reaction rather than the direct 1,3-dipolar cycloaddition of carbonylcarbene to nitriles.

The AlCl $_3$ catalyzed reaction is reported to be affected by the reaction condition and to yield chlorinated products. Therefore, BF $_3$ -etherate is recommendable as the more convenient catalyst than AlCl $_3$.

References

- 1 (a) R.Huisgen, H.Koing, G.Binsch, and H.J.Sturm, Angew.Chem., 73, 368 (1961);
- (b) R.Huisgen, G.Binsch, and L.Ghosez, Chem.Ber., 97, 2628 (1964); (c) R.Huisgen, H.J.Sturm, and G.Binsch, Chem.Ber., 97, 2864 (1964); (d) J.M.Birchall, R.N.Haszeldine, J.Nikokavouras, and E.S.Wilks, J.Chem.Soc(C), 562 (1971).
- 2 (a) F.Weygand, Angew.Chem., <u>73</u>, 70 (1961); (b) N.T.Buu and J.Y.Edward, Can.J.Chem., <u>50</u>, 3730 (1972).
- 3 R.K.Armstrong, J.Org.Chem., <u>50</u>, 618 (1966).
- 4 K.Kitatani, T.Hiyama, and H.Nozaki, Tetrahedron Lett., 1531 (1974).
- 5 M.P.Doyle, M.Oppenhuizen, R.C.Elliott, and M.R.Boelkins, ibid., 2247 (1978).

(Received August 19, 1978)